1/(a+2)+1/(a^2-4)

Simple and best practice solution for 1/(a+2)+1/(a^2-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/(a+2)+1/(a^2-4) equation:


D( a )

a+2 = 0

a^2-4 = 0

a+2 = 0

a+2 = 0

a+2 = 0 // - 2

a = -2

a^2-4 = 0

a^2-4 = 0

1*a^2 = 4 // : 1

a^2 = 4

a^2 = 4 // ^ 1/2

abs(a) = 2

a = 2 or a = -2

a in (-oo:-2) U (-2:2) U (2:+oo)

1/(a+2)+1/(a^2-4) = 0

(1*(a^2-4))/((a+2)*(a^2-4))+(1*(a+2))/((a+2)*(a^2-4)) = 0

1*(a^2-4)+1*(a+2) = 0

a^2+a-2 = 0

a^2+a-2 = 0

a^2+a-2 = 0

DELTA = 1^2-(-2*1*4)

DELTA = 9

DELTA > 0

a = (9^(1/2)-1)/(1*2) or a = (-9^(1/2)-1)/(1*2)

a = 1 or a = -2

(a+2)*(a-1) = 0

((a+2)*(a-1))/((a+2)*(a^2-4)) = 0

((a+2)*(a-1))/((a+2)*(a^2-4)) = 0 // * (a+2)*(a^2-4)

(a+2)*(a-1) = 0

( a+2 )

a+2 = 0 // - 2

a = -2

( a-1 )

a-1 = 0 // + 1

a = 1

a in { -2}

a = 1

See similar equations:

| 4x^2-6x^4+2=0 | | 4x=25+3(9) | | 10/a+10/10/a-10 | | 8x-7x^2=0 | | x^4+2x^3-x^2-2x-24=0 | | y=1/10x+2/5 | | -26/4 | | -6x+4=9x-25 | | -2/5(20/32) | | -x+10y=40 | | 5x-2=3(18-x)-8 | | 6x-4=9x-25 | | -2/5x20/32 | | x+9y=1 | | x^3-3x^2=30 | | z^2-3z-8=0 | | y+10=9/2-55 | | 8x+2=5x+45 | | 11c(6c^2-8c+1)= | | -20.5=3b+16.7 | | x/100=0.016 | | 3(n+1)=3n+(3-9n) | | -1/2-4x/5=1/2-1x | | 3(1.2x+2.2y)+2(3.2x+y)= | | 3b+16.7=120.5 | | 12/4.5 | | x^2-25x=50 | | 10000000000000x+498453834984389249843984298349383=42646834984298484298+419838434935983593x | | 14c+6=3(9+c) | | 8x+9(2x+3)= | | 10a+8=7a-10 | | 2x^3-10x^2-34x+42=0 |

Equations solver categories